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SUMMARY

The study of the dense gas �ows which occur in many technological applications demands for �uid
dynamic simulation tools incorporating complex thermodynamic models that are not usually available in
commercial software. Moreover, the software mentioned can be used to study very interesting phenom-
ena that usually go under the name of ‘non-classical gasdynamics’, which are theoretically predicted
for high molecular weight �uids in the superheated region, close to saturation. This paper presents the
numerical methods and models implemented in a computer code named zFlow which is capable of simu-
lating inviscid dense gas �ows in complex geometries. A detailed description of the space discretization
method used to approximate the Euler equations on unstructured grids and for general equations of
state, and a summary of the thermodynamic functions required by the mentioned formulation are also
given. The performance of the code is demonstrated by presenting two applications, the calculation
of the transonic �ow around an airfoil computed with both the ideal gas and a complex equation of
state and the simulation of the non-classical phenomena occurring in a supersonic �ow between two
staggered sinusoidal blades. Non-classical e�ects are simulated in a supersonic �ow of a siloxane using
a Peng–Robinson-type equation of state. Siloxanes are a class of substances used as working �uids in
organic Rankine cycles turbines. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the numerical simulation of gaseous �ows the polytropic ideal gas thermodynamic model
is usually employed because of its simplicity and the corresponding low computational cost.
This is an acceptable approximation in many cases, but there are applications in which the
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736 P. COLONNA AND S. REBAY

�ow conditions lies in a thermodynamic region where the ideal gas approximation cannot be
applied (usually de�ned as the dense gas region).
This is the case, for example, in the study of dense gas �ows which may display so-called

non-classical gas dynamic phenomena. In a gas region close to saturation at high pressure
and temperature and for �ows of complex molecules, in an isentropic expansion, the speed of
sound increases with decreasing density, as opposed to what is prescribed by applying the ideal
gas approximation. Details of the basic theory for non-classical gas dynamics of dense gases
can be found for example in References [1, 2]. The opposite trend of the sound speed with
respect to density introduces many interesting e�ects, like the impossibility of compression
shocks in that region, the suppression of shock-induced separation and non-conventional shapes
of the channel for the supersonic acceleration from supercritical stagnation conditions (see e.g.
References [2–9]). Fluids exhibiting non-classical behaviour are called BZT after the initials
of the scientists who �rst formulated the theory.
CFD simulations of dense gases in the classical regime are reported in the literature.

Several works describe the study of �ows through nozzles [10] or around simple airfoil
geometries [11–13]. Two-dimensional simulations of the �ow through turbine cascades are
treated in References [14, 15]. The complexity of the numerical methods varies from an ex-
plicit �nite volume method (FVM) applied to the two-dimensional Euler and Navier–Stokes
equations [11], to an upwind scheme for the solution of the Euler equations in the ax-
isymmetric form [10], to an implicit, �nite-volume upwind scheme for the solution of the
two-dimensional Euler and Navier–Stokes equations [12, 15]. Fluid thermodynamic models
also varies in complexity from the Van der Waals [10] and Redlich–Kwong-type equa-
tions of state (EOS) [14] to the Beatty–Bridgemann [11], Martin–Hou [12, 13] and BWR
[10] EOSs.
Other documented simulations are focused speci�cally on BZT e�ects in �uid �ows. Nozzle

and simple geometries are treated e.g. in References [8, 16–18]. Shock tube �ows are treated
e.g. in References [19–22]. In References [16, 17] an FVM by Jameson is used to solve
the two-dimensional inviscid equations. In References [8, 19–21] a predictor–corrector total
variational diminishing (TVD) scheme is used to solve the time-dependent, two-
dimensional Euler equations. In Reference [22] the upwind scheme of Reference [23] was
adopted to solve the three-dimensional Euler equations. A transonic small-disturbance ap-
proximation of the Navier–Stokes equations is solved with a Murman and Cole method in
Reference [18]. In all the cited works dealing with BZT e�ects, either the Van der Waals
[8, 16, 17, 19] or the Martin–Hou [18, 20–22] EOSs were adopted. Two-dimensional �ows ex-
hibiting non-classical e�ects through turbine cascades were simulated in References [9, 24, 25].
In Reference [24], the Van der Waals model was employed while the Martin–Hou EOS was
adopted in References [9, 25]. In Reference [24] the FVM by Jameson was used, while the
McCormack scheme was adopted in Reference [25] and a second-order time-space accurate
�ux-limited method by Davis was employed in Reference [9] to solve the Euler equations.
In all the publications mentioned, structured grids were employed for the space discretization
except for the works in References [17, 22] where unstructured grids were used.
The study of non-classical gas dynamic phenomena has been one of the driving forces for

the development of a CFD code named zFlow, which integrates a modern numerical dis-
cretization scheme with accurate thermodynamic models to describe dense gas e�ects. The
objective of this paper is to present the theory, implementation, validation and the prelimi-
nary results obtained with zFlow. The code is presently limited to the solution of the Euler
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equations, i.e. viscous e�ects are not considered, but can nevertheless give substantial infor-
mation on the non-classical gasdynamic e�ects mentioned above. Other interesting phenomena
which could be strongly in�uenced by non-classical e�ects, such as for example the interac-
tion between a shock impinging on a solid wall and the boundary layer, cannot be studied
unless viscous e�ects (and turbulence) are considered. The extension of the code to the so-
lution of the full Reynolds-averaged Navier–Stokes equations is however planned for the
near future.
The main features characterizing the CFD code zFlow are hereby summarized. The spatial

approximation of the Euler equations is constructed with an high resolution �nite volume
method suitable for general unstructured and hybrid grids. The method can be regarded as
an hybrid between the �nite element (FE) and �nite volume (FV) methods in that the �nite
volume metric quantities are constructed on the basis of the Lagrangian polynomial shape
functions typically used in �nite element methods [26]. As a consequence it can be proved
that this type of FV schemes with a centred numerical �ux function is identical to a classical
FE discretization [27]. The high-resolution upwind discretization is constructed on the basis
of the Roe approximate Riemann solver (ARS) [28–30] generalized to the case of �uids
characterized by arbitrary equations of state according to the method of Vinokur and Mon-
tagn�e [31]. The interested reader may �nd a comparison of some possible approaches for the
construction of generalized ARS in Reference [32], see also e.g. References [23, 33–35]. It
is important to remark that the use of unstructured grids allows the straightforward treatment
of domains of arbitrarily complex geometry. Another important feature of zFlow is repre-
sented by the adopted implicit time integration scheme, which allows for the computation
of steady-state solutions in a much more e�cient way with respect to conventional explicit
schemes. The gain in computational e�ciency is crucial when complex equation of state are
needed for an accurate �ow simulation. The CFD code zFlow integrates a rich thermody-
namic library for the calculation of properties of pure �uids and mixtures which has been
extended to include the particular thermodynamic functions requested by the implicit upwind
�ow solver (see Reference [36]). To the knowledge of the authors, the use in a CFD code of
thermodynamic models like the modi�ed Keenan–Keyes EOS for water [37, 38], the Haar–
Gallagher EOS for ammonia [37, 39], the Starling EOS for light hydrocarbons [37, 40] and
the Peng–Robinson–Strijeck–Vera (PRSV) cubic equation of state for pure �uids and its ex-
tension to mixtures by means of the Wong–Sandler mixing rules is documented here for the
�rst time.
In Section 2 of this paper, particular emphasis is given to the discussion of high-resolution

upwind formulation for unstructured grids and general equations of state as implemented
in zFlow. The boundary treatment in the case of general gases is also thoroughly presented.
Section 3 gives an overview of the additional thermodynamic functions that the thermodynamic
library must provide to the CFD solver. Section 4 presents the results of a validation test—a
well known test case for inviscid �ows involving a transonic �ow of air around an airfoil is
compared to a zFlow calculation in which nitrogen is modelled with the PRSV EOS. Section 5
shows an evaluation of the computational e�ciency of the implemented implicit backward
Euler time integration scheme. A �rst assessment of the zFlow capability of simulating non-
classical gas dynamic e�ects is illustrated in Section 6 and compared with similar calculations
by other researchers. In the example, a two-dimensional supersonic �ow between two staggered
sinusoidal blades is calculated. Fluids belonging to the siloxanes class are currently employed
as working �uids in organic Rankine cycles (ORC).
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2. NUMERICAL SOLUTION OF THE EULER EQUATIONS ON UNSTRUCTURED
GRIDS FOR COMPLEX EQUATIONS OF STATE

This section illustrates the discretization techniques of the Euler equations implemented in the
computer program zFlow. A brief review of the theory of the equations governing the motion
of inviscid compressible �ows, including the treatment of the initial and boundary conditions,
is �rst given. The �nite element–�nite volume (FEFV) space discretization technique used in
zFlow is then presented. Particular emphasis is given to the high-resolution upwind formulation
suitable for general unstructured and hybrid grids and general EOS and to the procedure used
to enforce the boundary conditions in the case of general EOS. The explicit and implicit time
integration methods available in the code are also shown.
It should be noted that the methodologies hereby described have been developed by various

authors of the CFD community in the past decade and can be found, albeit in a somewhat
scattered fashion, in the available CFD literature. No claim of originality is therefore made
by the authors from a methodological perspective. The material which follows has therefore
to be regarded as a brief review of the subject which allows for a self-contained reading of
the paper.

2.1. Governing equations

The Euler equations can be written in the so-called ‘divergence’ or ‘conservative’ form as,

@u
@t
+∇x ·F(u)=0 (1)

where the conservative variable vector u∈Rd+2, the �ux function F(u)∈Rd ⊗Rd+2, x ∈ � ⊂
Rd, t ∈ [0; T ] ⊂ R, and d denotes the number of space dimensions. Here and in the following,
bold symbols are used to indicate vectors both in the physical space Rd and in the so-called
‘state space’ Rd+2. The distinction between the two cases is explicitly indicated when not
clear from the context. Bold capitals instead indicate quantities belonging to the Rd ⊗ Rd+2

such as the �ux F(u). The conservative variable vector u and the cartesian components fj(u)
of the �ux F(u) are given by

u=




�

�et

�qi


 ; fj(u)=




�qj

(�et + P)qj

�qiqj + P�ij


 (2)

where � denotes the density, et the stagnation (or total) energy (i.e. the sum of the internal
and kinetic energy), P the pressure, qj the cartesian components of the velocity vector q, and
�ij the Kroenecker symbol. System (1) represents d+ 2 partial di�erential equations in the
d+ 2 unknowns u if the pressure is regarded as a known function �(u) given by

�(u)=�(�; �et; �q)=P
(
�;

�et

�
− |�q|2
2�2

)
=P(�; e) (3)

where P(�; e) is a thermodynamic equation of state (see Appendix A for more details).
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A particularly convenient starting point for the construction of a space-discretized version
of the Euler equations is the so-called ‘weak’ or ‘variational’ form,∫

�
�
@u
@t
d�−

∫
�

∇x� ·F(u) d� +
∮
@�

�n ·F(u) d�=0 ∀�∈V (4)

which must be satis�ed for any function � belonging to a suitable function space V . The
weak form can be obtained by multiplying the di�erential form (1) by a test function �∈V ,
integrating over the domain � and performing an integration by parts of the term containing
the divergence of F(u).
The Euler equations must be supplemented by consistent initial and boundary conditions.

The initial data is simply an arbitrary �eld u(x; t0)= u0(x). To impose the boundary condition
in the context of the weak or variational formulation, the �ux function n ·F(u) appearing in
the boundary integral of (4) must be evaluated with the ‘boundary state’ ub. The evaluation
of ub for a �uid characterized by an arbitrary equation of state is described in Section 2.3.
The weak formulation with weakly prescribed boundary conditions therefore reads,∫

�
�

@u
@t
d�−

∫
�

∇x� ·F(u) d� +
∮
@�

�n ·F(ub) d�=0 ∀�∈V (5)

2.2. Space discretization

The �rst step needed for the construction of a discrete version of a partial di�erential problem
is the geometrical discretization of the domain � which must be approximated as a collection
of non-overlapping elements {E}, namely triangles or quadrilateral in 2D, and tetrahedra,
prisms, pyramids and hexahedra in 3D. The set {E} is referred to as the ‘grid’, ‘mesh’ or
the ‘triangulation’ of the domain (even when the elements are not actual triangles) and is
denoted by the symbol Th. �e indicates the domain associated to element E (i.e. the set of
points internal or on the boundary of E). For every vertex (hereafter also called node) of Th,
�i refers to the union of the domains �e of the elements E which contain the node i, and
@�i refers to the boundary of �i. �i denotes the set �i ∩@�. The set of all the nodes of Th is
denoted by K and that of the boundary nodes by K@. The nodes inside or on the boundary
of �i are instead denoted by Ki, Ki �= denotes the set Ki except node i, and K@

i =Ki ∩ K@

(see Figure 1).
The adopted space-discretization method closely follows the ideas introduced in Reference

[26] and subsequently extended in References [27, 41], and can be regarded as an hybrid �nite
element/�nite volume (FE/FV) scheme. As a preliminary step towards the description of the
discretization method used in this work, the FV and the FE space discretization of the Euler
equations are therefore brie�y reviewed. The notation is the one employed in Reference [41].
The FV schemes can be constructed by searching an approximate solution of the weak for-

mulation (5) among functions uh which belong to the �nite-dimensional space V 0
h of piecewise

constant functions over a set of non-overlapping regions Ck which cover the entire domain �.
A convenient basis of the space V 0

h is given by the characteristic functions Ik(x) which are
null for x =∈ Ck and are equal to 1 for x∈Ck . A generic function uh(x; t)∈V 0

h or �h(x)∈V 0
h

can in fact be written as

�h(x)=
∑

k∈K

Ik(x)�k; uh(x; t)=
∑

k∈K

Ik(x)uk(t)
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Ω i

i

Ω j

j

Γj

Figure 1. Simple 2D triangulations showing the domains �i and �j associated with an internal (left)
and a boundary (right) point, respectively. The white circles indicate points i∈Ki and j ∈Kj.

Cj

i

Ci

j

Figure 2. Simple 2D triangulations showing the domains Ci and Cj associated with an internal (left)
and a boundary (right) point, respectively.

where the expansion coe�cients uk(t) and �k are simply the values of uh(x; t) or �h(x) for
x∈Ck . The so-called node-centred (or vertex-centred) FV schemes are obtained if the volumes
are associated to the nodes K as depicted in Figure 2. A discrete version of the weak form
(5) can be obtained by replacing the functions �∈V and u∈V with functions �h ∈V 0

h and
uh ∈V 0

h thus obtaining, for a generic cell Ci, the equation,

d
dt

∫
Ci

uh d� +
∑

k∈Ki; �=

∫
	ik

n ·Fi d�+
∫
	i

n ·F(ub) d�=0 (6)

where Fi=F(ui) and the boundary @Ci of Ci has been regarded as the union of interfaces
	ik = @Ci ∩@Ck and, if the cell Ci is adjacent to the boundary of the domain, of the boundary
face 	i= @Ci ∩ @�.
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Note that the �ux function appearing in the interface integrals is not uniquely de�ned
since uh is discontinuous on 	ik . The normal physical �ux n ·Fi on 	ik is therefore replaced
by a numerical �ux function f̂(ui ; uk ; n) which depends on the states ui and uk of the two
cells sharing 	ik and on the normal vector n. If the discrete unknown is de�ned as

ui(t)=
1

|Ci|
∫
Ci

uh d�

the semi-discrete equations with the physical �ux replaced by the numerical �ux can therefore
be written as,

|Ci|duidt +
∑

k∈Ki; �=
f̂(ui ; uk ; ]ik) + ]i ·Fbi =0; ]ik =

∫
	ik

n d�; ]i=
∫
	i

n d� (7)

where the boundary state ub is assumed to be constant over 	i.
FE methods can be instead constructed starting from the weak formulation (5) by consider-

ing a �nite-dimensional space V 1
h of linear or bilinear test functions �h, i.e. of functions which

are globally continuous and linear or bilinear inside the elements E of Th. A convenient basis
for V 1

h is given by the Lagrangian polynomials Ni, which are associated with the vertices of
the triangulation and which are di�erent from zero only inside �i. A generic function �h(x)
of uh(x; t) can therefore be written as the expansions,

�h(x)=
∑

k∈K

Nk(x)�k; uh(x; t)=
∑

k∈K

Nk(x)uk(t) (8)

where �i and uh(t) are expansion coe�cients which in fact are equal to the nodal values of
the functions �h(xi) or uh(xi ; t). The approximate solution can be searched among functions
uh which are in the same �nite-dimensional space V 1

h chosen for �h (Galerkin method). By
substituting expansions (8) into (5) the semi-discrete equations for a generic node i of Th are
obtained, i.e.

∑
k∈Ki

[∫
�i

NiNk d�
]
duk(t)
dt

+
∫
�i
Nin ·F(ub) d� −

∫
�i

∇xNi ·F
( ∑

k∈Ki

Nkuk(t)

)
d�=0 (9)

where the various integrals have been restricted to �i since Ni vanishes outside �i,
�i= @�i ∩ @�, and the summations have been restricted according to the support of Ni. By
reinterpolating the �ux function by means of the same basis functions Ni used to approximate
the test function and the unknown, i.e.

F(uh)=F
( ∑

k∈K

Nkuk(t)
)

≈ ∑
k∈K

NkF(uk(t))=
∑

k∈K

NkFk

the discrete Galerkin formulation of the Euler equations can be rewritten as,

∑
k∈Ki

[∫
�i

NiNk d�
]
duk(t)
dt

+
∑

k∈K@
i

[∫
�ik

NiNkn d�
]

·Fbk

− ∑
k∈Ki

[∫
�ik

Nk∇xNi d�
]

·Fk =0 (10)
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742 P. COLONNA AND S. REBAY

where �ik =�i ∩ �k and �ik denotes @�i ∩ @�k ∩ @�. This approximation, usually referred
to as ‘group approximation’, makes the evaluation of the integrals much simpler and greatly
improves the computational e�ciency of the method since all the quantities appearing between
square brackets do not depend on the solution and can therefore be evaluated and stored at
the beginning of the computation. The saving is particularly relevant when the �ux function
evaluation is computationally expensive as in the case of �uids characterized by complex
equations of state.
Following the ideas introduced by Selmin [26] and Selmin and Formaggia [27], and more

recently extended in Reference [41], the summations appearing in the discrete Galerkin for-
mulation (10) can be rearranged in a much more convenient form, i.e. as summation over
pairs of ‘interacting’ nodes, called node-pairs. Two nodes i and k interact if the associated
regions �i and �k have a non-empty intersection, i.e. if �ik =�i ∩�k �= 0. The mass matrix
Mik and the metric vectors W ik , �@ik and ^@i are de�ned as

Mik =
∫
�i

NiNk d�

W ik =
∫
�ik

(Ni∇xNk − Nk∇xNi) d�; �@ik =
∫
�ik

NiNkn d�; ^@i =
∫
�i
Nin d�

therefore the Galerkin discrete equations (10) can be rewritten as,

∑
k∈Ki

Mik
duk
dt
+

∑
k∈Ki; �=

W ik · Fi + Fk

2
+ ^@i ·Fbi +

∑
k∈K@

i; �=

�@ik · F
b
k − Fbi
2

=0 (11)

For a complete discussion of the metric vectors and the derivation of (11) see Reference
[27]. If time accuracy is not an issue (such as for example in steady state calculations), the
consistent mass matrix Mik which couples the time derivative terms can be ‘lumped’ to a
diagonal matrix Di=

∑
k∈Ki

Mik , and the corresponding equations can therefore be written as,

Di
dui
dt
+

∑
k∈Ki; �=

W ik · Fi + Fk

2
+ ^@i ·Fbi +

∑
k∈K@

i; �=

�@ik · F
b
k − Fbi
2

=0 (12)

The metric vectors W ik , �@ik and ^@i are characterized by the remarkable properties

W ik =−W ki;
∑

k∈Ki; �=
W ik + ^@i = 0;

∑
k∈K@

i; �=

�@ik = ^@i

which are satis�ed for any node i or k (notice that �@ik = 0 and ^@i = 0 if i or k are internal
nodes). These properties guarantee that the metric vectors behave similar to the integrated
normal vectors ]ik previously de�ned in the context of �nite volume methods and that, apart
from the second-order boundary terms corresponding to the last summations appearing in
Equation (11) or (12), the FE discretization (11) can be interpreted as a node-centred FV
discretization in which the cell shapes are de�ned so that,

Ci=
∑

k∈Ki

Mik =Di; ]ik = W ik ; ]i= ^@i (13)
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To avoid the stability problems encountered with centred �ux formulations, the simple average
(Fi + Fk)=2 appearing in (12) must be replaced with a normal numerical �ux function, thus
arriving at the so-called FE/FV formulation

Di
dui
dt
+

∑
k∈Ki; �=

f̂(ui ; uk ; W ik) + ^@i ·Fbi +
∑

k∈K@
i; �=

�@ik · F
b
k − Fbi
2

=0 (14)

The performance of both the FV scheme (7) and FE/FV scheme (14) is crucially dependent
on the choice of the numerical �ux function. To achieve second-order accuracy and avoid
the generation of spurious oscillations in the neighbourhood of the shocks, a total variation
diminishing (TVD) numerical �ux formula is used in zFlow. A complete discussion of the
class of upwind TVD numerical �ux functions for the Euler equations and �uids characterized
by arbitrary equations of state is beyond the scope of this paper (see e.g. Reference [42]),
but it is however important to observe that any second-order accurate TVD numerical �ux
formula depends not only on the interface values ui and uk previously considered but also on
two additional values um and un. In the one-dimensional case, the additional values correspond
to unknown values at the nodes m= i − 1 and n= k +1, i.e. m; i; k; n denote four consecutive
aligned points.
The extension of high-resolution schemes to the multidimensional case is therefore not

immediate since, for general unstructured grids, the points are not aligned as in the one-
dimensional case (or as in the case of multidimensional structured grids).
In zFlow, following the simple but very e�ective technique originally proposed in

Reference [43], um and un are chosen as the values pertaining to the ‘better aligned’ nodes
with respect to the triangulation edge associated to the node-pair ik as shown in Figure 3.
Notice that the ‘extended node pair’ m; i; k; n can be predetermined on a purely geometrical
basis at the beginning of the computation, thus improving the computational e�ciency of the
methods.

i
k

nm

Figure 3. Simple 2D triangulations showing the nodes m; i; j; n of an extended node-pair (thick line).
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In conclusion the discrete Galerkin formulation of the Euler equation with a high-resolution
TVD numerical �ux exploiting the extended node pair concept can be written as,

Di
dui
dt
+

∑
k∈Ki; �=

f̂(um; ui ; uk ; un; W ik) + ^@i ·Fbi +
∑

k∈K@
i; �=

�@ik · F
b
k − Fbi
2

=0 (15)

zFlow employs the total variation diminishing (TVD) �ux formula introduced by Davis
[44] extended to the case of real gases following the Vinokur–Montagn
e approach [31]
and using the Van Albada [45] ‘smooth’ limiter function together with the Harten Entropy
�x [46].
The �ux can be written as,

f̂ =
1
2
[F(ui) + F(uk)] · W ik − 1

2
R(R)
W ik

〈�(R)W ik
〉�(�wik ; �w?)

where R
(R)
W ik =RW ik (u(R)) and �

(R)
W ik
=�W ik (u(R)) denote the right eigenvector and the (diagonal)

eigenvalue matrices of the Jacobian matrix in the direction W ik evaluated at the
Vinokur–Montagn
e generalized Roe average state u(R)(ui ; uk). The ‘wavestrength’ vector �wik

for a generic node pair ik is de�ned as

�wik =L(R)
W ik
(uk − ui); L(R)

W ik
=(R(R)

W ik
)−1

while �w? denotes a vector of upwind biased wavestrengths given by

�w(‘)? =



�w(‘)mi if �(‘)¿0

�w(‘)kn if �(‘)¡0

The expression 〈�(R)W ik
〉 denotes a ‘smoothed’ absolute value and is de�ned as

〈�(R)�ik
〉=diag {〈�k〉} ; 〈�k〉=

{|�k | if |�k |¿h;

(�2k + h2)=(2h) if |�k | 6 h;
h= �(M + 1)

where M = |v|=c is the Mach number and � is a free parameter. In the results hereby presented
the value �=1=10 has always been used. The function �∈Rd+2 is a vector function whose ‘th
component is given by a scalar function �(a; b)∈R, where a∈R and b∈R, which operates
on the ‘th components �w(‘)ik and �w(‘)? of the wavestrength vectors, i.e.

�(‘)(�wik ; �w?)=�(�w
(‘)
ik ; �w(‘)? )
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The scalar function �(a; b) can be written as

�(a; b)= a
[
1−�

(
b
a

)]

in which the function �(b=a) can be selected as any of the ‘�ux limiter’ functions available
in the literature. In this work the Van Albada limiter has been used, so that

�(r)=
r2 + r
r2 + 1

; r=
b
a
; �(a; b)= a − ab(a+ b)

a2 + b2

2.3. Boundary treatment for general �uids

The boundary condition treatment for the Euler equations is rather involved since the quantities
that must be prescribed are in general di�erent from the vector of the conservative variables u
or from some of its components. The quantities known at the boundary are instead non-linear
functions of the conservative variables, say  k(u), k=1; : : : ; p where p6 d+ 2, such as for
example the pressure P=�(u) or the �ow angle �= �(u). Both the number p of quantities to
be prescribed and the quantities themselves, i.e. the actual expression of the functions  (u),
depend on the local �ow conditions (for more details see e.g. Reference [42]).
The number of conditions and the quantities that can be prescribed can be determined

by considering the projection of the Euler equations in the direction normal to the bound-
ary, which reveals that the solution can be regarded as the combination of d+ 2 inward
and outward travelling waves of non-linear functions �k(u) called ‘Riemann invariants’,
k=1; : : : ; d+ 2. The propagation speed of the functions �k(u) is given by the Eigenvalues
�k
n (u) of the Jacobian matrix An(u). The solution at the boundary is therefore a combination
of information travelling inside-out from the domain—the Riemann invariants associated to
characteristic lines with space-time slope �k

n¿0 if n is the outward unit normal vector—and
information travelling outside-in the domain, and it is only the latter information that must
be prescribed. As a consequence, the number of quantities that must be prescribed is equal
to the number of negative eigenvalues �k

n¡0.
The boundary state ub is therefore computed by combining the p prescribed data, where p

is the number of negative eigenvalues, with the d+ 2 − p Riemann invariant associated to
the positive eigenvalues, i.e. as the solution of the system{

 k(ub)=  k
b k=1; : : : ; p

�k(ub)=�k(u) k=p+ 1; : : : ; d+ 2
(16)

where  k
b denote the prescribed value of the quantity  k , and u is the solution at the boundary

(which is di�erent from ub because of the weak enforcement of the boundary conditions).
Notice that, in order for the system to be solvable, the functions  k(u) must not be a com-
bination of the outward-travelling Riemann invariant.
In order to work with simpler expressions (and, in particular, to avoid the analytical compu-

tation of the Riemann invariants in �nite form which may prove a very involved and lengthy
matter for a �uid with a complex EOS) the linearized version of system (16) for the primitive
variables v=[�; P; q] is considered. For simplicity the same notation �k(v) and  k(v) is used
to indicate the Riemann invariants and the prescribed data even if it obviously denotes func-
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tions which are di�erent from �(u) and  k(u). The functions  k(vb) and �k(vb) are therefore
approximated as,

 k(vb) ≈
(
@ k

@v

)
v
(vb − v) +  k(v); �k(vb) ≈

(
@�k

@v

)
v
(vb − v) + �k(v)

so that the system to be solved in order to evaluate the boundary state can be written as,


(
@ k

@v

)
v
�v=  k

b −  k(v)

(
@�k

@v

)
v
�v=0

where the unknown is �v= vb−v. The analytical solution of the above system is now presented
for an in�ow and an out�ow boundary. The expression of the linearized Riemann invariants
in the 1D, 2D and 3D Euler equations is given in Appendix A.

2.3.1. In�ow boundary. An in�ow boundary is �rst considered. It is de�ned as the subset
of @� where the �ow enters into the domain �, i.e. such that qn= q · n¡0 (n points out
from �).
In the subsonic case, where Mn= |qn|=c¡1, there is only one positive eigenvalue (qn + c)

and consequently d+ 2 − 1 quantities are to be prescribed. These are the thermodynamic
stagnation state (here given in terms of the entropy s and the stagnation enthalpy ht) and the
�ow direction. These are in fact the quantities typically known or measured at the in�ow of a
duct or, for what concerns the stagnation thermodynamic state, at an upstream reservoir. The
missing quantity to completely de�ne the boundary state is the Riemann invariant associated
to the eigenvalue qn + c evaluated from inside �. The equations for the computation of vb

are therefore

�ht = �ht
Q

�s= �sQ (17)

�P + �c�qn =0

Notice that the direction of the boundary velocity vector qb is a prescribed datum and that only
its magnitude qb is to be determined. It is therefore convenient to rewrite the third equation
of the previous system in terms of the unknown �q. If R denotes the prescribed unit normal
vector in the direction of qb, this implies that qb = Rqb. A simple calculation reveals that

�qn=�n�q − �	; �	= qn − �nq

where �n= R · n. System (17) can therefore be rewritten as

�ht = �ht
Q

�s= �sQ (18)

�P + �c�n �q= �c �	
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which is a system of three algebraic equations in the four unknown �ht , �s, �P and �q
(�ht

Q and �sQ are the boundary data). The missing relation is provided by the (linearized)
Gibbs–Duhem thermodynamic relation

�h=T�s+
�P
�
+

nc∑
i=1

(
@h
@ni

)
P; s; nj �=i

�ni (19)

In (19), ni is the mole fraction of component i and nc is the number of components in the
mixture. Imposing that there is no phase change implies that the composition does not change,
therefore the last term in (19) is zero and it reduces to

�h=T�s+
�P
�

(20)

Equation (20) can be used to express �P as a function of �ht and �s, as shown in the
following. Summing the term �q2 on the left- and right-hand sides of the previous equation
gives

�ht = T�s+
�P
�
+
1
2
�q2

= T�s+
�P
�
+ 
q�q

= T�s+
�P
�
+ q�q+

1
2
(�q)2

where 
( · ) is the average operator [( · )b + ( · )]=2. The pressure di�erence is therefore given
by

�P=�
(
�ht − T�s − q�q − 1

2
(�q)2

)

Inserting the above expression in the last equation (18) yields,

�
(
�ht
Q − T�sQ + (c�n − q)�q − 1

2
(�q)2 − c�	

)
=0

which can be rewritten as the second-order algebraic equation

1
2
(�q)2 − (c�n − q)�q+ (c�	+ T�sQ − �ht

Q)=0

having roots (�q)± given by

(�q)±=(c�n − q)±
√
(c�n − q)2 − 2(c�	+ T�sQ − �ht

Q)

The physical relevant solution is that which yields �q=0 when the prescribed data are equal
to the internal state u. In this case �ht

Q=0, �sQ=0, and �	=0, and the two roots can be
written as

(�q)±=(c�n − q)± |c�n − q|
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Applying the conditions of in�ow boundary and subsonic �ow in the normal direction gives
�n¡0 and c�n −q¡0. In order to get �q=0, (�q)+ must be selected in the above expression.
In conclusion the velocity di�erence is given by

(�q)= (c�n − q) +
√
(c�n − q)2 − 2(c�	+ T�sQ − �ht

Q)

The calculation of the boundary state for an in�ow boundary which is supersonic in the
normal direction is trivial since all the eigenvalues are negative and d+ 2 boundary data must
be prescribed (the entire vector vb is the prescribed data in this case).

2.3.2. Out�ow boundary. An out�ow boundary is a subset of @� such that q · n¿0. Also in
this case the number of conditions to be prescribed depends on the �ow being subsonic or
supersonic in the normal direction. If the �ow in the normal direction is subsonic there is
only one eigenvalue �= qn − c¡0, while all the eigenvalues are positive in the supersonic
case.
The subsonic case is analysed �rst. The equations which allow for the computation of the

boundary state are

�P + �c �qn =0

c2��+ �P=0 (21)

�P= �PQ

where in the three-dimensional case, the second equation can be obtained as a linear combi-
nation of the second, third and fourth characteristic equations. The solution of the system is
in this case almost trivial, namely

��=−�PQ
c2

�q=
�PQ
�c2

n (22)

�P= �PQ

In the supersonic case no condition is to be imposed and the boundary state is simply equal
to the internal state, i.e. vb = v.

2.4. Time discretization

The semi-discretized FE formulation (15) is a system of coupled non-linear ordinary di�er-
ential equations (ODE) which can be written as,

M
dU
dt
+ R(U )=0 or D

dU
dt
+ R(U )=0
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where M and D denote the consistent and lumped (or diagonalized) mass matrices, respec-
tively, U is the global vector of the unknown solution and R(U ) the global residual vector
of components Ri given by

Ri=
∑

k∈Ki; �=
f̂(um; ui ; uk ; un; W ik) + ^@i ·Fbi +

∑
k∈K@

i; �=

�@ik · F
b
k − Fbi
2

The equations can be integrated in time with both explicit or implicit time marching
schemes. A step of an explicit time integration method is usually much cheaper both in terms
of CPU time and of memory usage than a step of an implicit backward Euler scheme. How-
ever, the time step t which can be used in an explicit scheme is limited by the CFL condition

t 6 min
i∈K



xi
�maxi

where �maxi denotes the maximum eigenvalue of the Jacobian matrix of the Euler equations
evaluated at the node i, i.e. �maxi = |vi| + ci, and xi is a characteristic mesh size at node i
computed as

xi= min
k∈Ki; �=

|xi − xk |

The value of the CFL number 
 depends on the type of time integration scheme considered
but is always O(1) in the explicit case. Conversely, an implicit scheme such as Backward
Euler does not have any limit on the allowable t (at least in the linear case). This means
that an implicit scheme may be very convenient in the computation of steady state solutions
or of unsteady solution where the CFL condition dictates a time step t which is much
smaller than that which would be used because of accuracy considerations alone. Moreover,
an implicit time integration scheme may be convenient when the computational resources re-
quired to solve the system are of the same order of magnitude of those required to compute
its right-hand side alone, as may be the case for the solution of the Euler equations for �uids
governed by complex equations of state.
In zFlow both the explicit total variation stable Runge–Kutta scheme suggested by Shu

[47] and the implicit backward Euler scheme have been implemented and, as expected, the
backward Euler scheme proved to be much more e�cient than the explicit scheme for steady
state computations, especially for �uids characterized by complex EOS (see Sections 4 and 6).
A single time step of the Runge–Kutta scheme can be written as,

U0 =Un

Uk = (1−  )U0 +  (Uk−1 −tD−1R(Uk−1))n; k=1; : : : ; m

Un+1 =Um

where n denotes the time level and m the number of Runge–Kutta stages. The values of the
coe�cients  , k=1; : : : ; m can be found for example in Reference [47].
A step of the implicit backward Euler scheme can instead be written as,[

D
t
+

@R(U )
@U

]n
Un=A(u)nUn= − R(U )n
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where Un denotes the solution increment Un+1−Un. For the sake of computational e�ciency,
however, the linearization of the residual appearing in the expression of the coe�cient matrix A
is evaluated in an approximate manner by using the �rst-order Vinokur–Montagn
e-generalized
Roe scheme

f̂(ui ; uk ; W ik)=
1
2
[F(ui) + F(uk)] · W ik − 1

2
〈A(R)

W ik
(ui ; uk)〉(uk − ui)

This means that, for a generic internal or boundary node i, the linearized increment of the
ith component of the residual vector R(U ) is evaluated as

@Ri(U )
@U

Un ≈ 1
2
∑

k∈Ki; �=
[(A(i)

W ik
+ 〈A(R)

W ik
〉)ui + (A(k)

W ik
− 〈A(R)

W ik
〉)uk]

+A
(i)
^@i

B(i)ui +
1
2
∑

k∈K@
i; �=

[A(i)
�@ik

B(i)ui − A
(k)
�@ik

B(k)uk] (23)

where the matrix B is an approximation of the Jacobian of the relation which gives the
boundary state ub as a function of the solution at boundary u, so that

ubi =B(i)ui

The matrix B(i) is computed as follows. The time linearization of system (16) gives


(
@ k

@u

)
ub
ubi =0 k=1; : : : ; p

(
@�k

@u

)
ub
ubi =

(
@�k

@u

)
u
ui k=p+ 1; : : : ; d+ 2

(24)

where it is assumed that the boundary conditions are time independent and that system (16)
is satis�ed at time level n. By denoting with Gb

i the matrix having the �rst p rows equal to
(@ k=@u)ub and the last d+ 2 − p rows equal to (@�k =@u)ub , and with Gi the matrix having
the �rst p rows equal to zero and the remaining d+ 2− p rows equal to (@�k =@u)u, system
(24) can be written in the compact form as

Gb
iu

b
i =Giui

which shows that

Bi=(Gb
i )

−1Gi

The solution of the linear systems occurring at each iteration is performed by means of the
incomplete LU factorization preconditioned generalized minimum residual (GMRES) method
implemented in the SLATEC common mathematical library available on http://www.netlib.org.
Very large CFL numbers can be used with the backward Euler time integration scheme.

However, in order to avoid the computation blowup, relatively small values of the CFL
number are required in the initial steps of the computation. In order to fully exploit the
advantages o�ered by an implicit time integration scheme in the computation of steady state
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solution the CFL number must therefore be increased as the solution converges. This can be
obtained in an automatic fashion by computing the value of the CFL number CFLi at the ith
iteration as,

CFLi= min
{
max

[
CFLmin
(ei=emax)K

; CFLmin
]
CFLmax

}
(25)

where ei denotes the L2 norm of the residual at the ith iteration, emax the maximum value of the
residual L2 norm occurred in all the iterations preceding the current one, i.e. emax = max16i6i−1
ei, and CFLmin, CFLmax and K are user de�ned parameters which control the evolution of
the CFL value during the computation. The parameters CFLmin and CFLmax are used to
impose the minimum and maximum possible CFL number, while the parameter K controls
how rapidly the CFL number increases as the solution converges. Typical values of K range
from 0.5 to 2.

3. UNCONVENTIONAL THERMODYNAMIC PROPERTIES FOR CFD

Numerical schemes for the solution of the Euler equations require the calculation of the
speed of sound and of some other partial derivatives of standard thermodynamic functions
(see Appendix A). The convective speed of sound is de�ned as

c2 =
(
@P
@�

)
s
=−v2

(
@P
@v

)
s

(26)

The pressure partial derivatives mentioned, de�ned as

�=
(
@P
@�

)
e
; �=

(
@P
@e

)
�

(27)

are necessary for the computation of the Jacobian matrices, while the entropy partial deriva-
tives

�=
(

@s
@�

)
e

and �=
(
@s
@e

)
�

(28)

are necessary for the calculation of the in�ow boundary if an implicit numerical scheme is
employed. If the code is used to investigate non-classical e�ects, the � function, de�ned as

�=1 +
�
c

(
@c
@�

)
s
=

v3

2c2

(
@2P
@v2

)
s

(29)

must also be evaluated. If the EOS is in the common form P=P(v; T ), where v is the speci�c
volume and T the temperature, the above expressions can be conveniently expressed as:

c =

√
−v2�

(
@P
@v

)
T

(30)
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� =
1
Cv

(
@P
@T

)
v

(31)

� = c2 − �Pv2 (32)

� = −v2
P
T

(33)

� =
1
T

(34)

�=
v3

2c2

{(
@2P
@v2

)
T

− 3 T
Cv

(
@P
@T

)
v

(
@2P
@v@T

)
v; T

+
[
T
Cv

(
@P
@T

)
v

]2{
3
(
@2P
@T 2

)
v
+
1
T

(
@P
@T

)
v

[
1− T

Cv

(
@Cv

@T

)
v

]}}
(35)

It can be noted that the calculation of the functions (30)–(35) involves only the following
terms: (

@P
@v

)
T
;
(
@P
@T

)
v
;
(
@2P
@v2

)
T
;
(
@2P
@T 2

)
v
;
(

@2P
@T@v

)
v; T

;
(
@Cv

@T

)
v

and the integral ∫ v

∞

(
@2P
@T 2

)
v
dv

If complex EOS or EOS for mixtures are adopted, their estimation is not trivial: the problem
is extensively addressed in Reference [36].
Presently, the estimation of thermodynamic properties for CFD calculations can only be im-

plemented by means of EOS; statistical mechanics methods are computationally too demanding
and require in many cases molecular data which are unavailable. To avoid numerical problems,
it is important that all thermodynamic properties are derived from a consistent thermodynamic
model. A thermodynamic model is consistent if all the properties are derived from the mini-
mum set of information: an equation of state in the form P=P(v; T ) and an expression for
the speci�c heat at constant pressure (or speci�c volume) in the ideal gas state (C0

P
or C0v ).

All properties can be derived using exact thermodynamic transformations (see e.g. Reference
[37]). Modern thermodynamic models are often based on the so-called fundamental relations:
e= e(v; s); g= g(T; P); a= a(�; T ); h= h(P; s), where e is the internal energy, g is the Gibbs
energy and a is the Helmholtz energy, h is the enthalpy (see e.g. Reference [48]). An ex-
pression for C 0

P =C 0
P(T ) is however necessary. Models based on pressure explicit EOS or

on fundamental relations are equivalent from the perspective of thermodynamic consistency.
Accuracy, especially in the close to critical region, is strongly dependent on the complexity
of the equation of state (see e.g. Reference [49]), which in turn requires a greater e�ort if
properties to be implemented in the code are derived analytically. If mixtures are taken into
consideration, mixing rules which are thermodynamically correct currently exist only for EOS
which are cubic in the speci�c volume (see e.g. References [50, 51]).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:735–765



EULER SOLVER FOR DENSE GAS SIMULATIONS 753

As shown in Reference [36] the computational time required to evaluate derived thermody-
namic functions containing partial derivatives by applying an adaptive numerical algorithm is
far greater if compared to the evaluation of their analytical expressions. To obtain analytical
expression for various thermodynamic models as those included in zFlow, a software for sym-
bolical manipulation of algebraic expressions and analytical derivation is very helpful [52].
Details of the derivation and expressions, of the thermodynamic functions cited, for various
thermodynamic models can be found in Reference [36].
A last remark is devoted to the calculation of thermodynamic properties in the critical

region: EOS based on the classical mean-�eld theory fails to predict the correct trends of
thermodynamic properties close to the critical point (see e.g. Reference [53]). The peculiar
behaviour of substances in the critical region strongly a�ects both volumetric and calorimetric
properties, thus if CFD simulations involve the critical region, the so-called crossover functions
should be integrated into the thermodynamic model [54–56]. Crossover functions for cubic
equations of state are available [57, 58] and were recently extended to mixtures [59].

4. VALIDATION: RECOVERY OF CLASSICAL RESULTS

To the knowledge of the authors, reference simulations of �uid �ows in the so-called real
gas thermodynamic region are not available. As a validation of the numerical scheme imple-
mented in zFlow, results from a two-dimensional calculation using nitrogen as the �uid are
compared to a well known and thoroughly documented reference simulation. The test case is
a transonic air �ow around a RAE2822 airfoil [60]. Far �eld conditions are M =0:75, angle
of attack �=3◦, P=1 bar and T =25◦C. As it can be noted the thermodynamic state is in
a region in which no real gas e�ects are to be expected and the ideal gas model was used in
Reference [60].
The mesh employed in the test case documented in Reference [60] is a Type-O grid with

320× 64 nodes. The zFlow calculation was performed over 192 nodes along the airfoil and
49 along the outward direction.
Due to the fact that the zFlow calculation employs the PRSV equation of state, which of

course tends asymptotically to the ideal gas behaviour at low temperature and pressure, the
recovery of this classical results is intended as a check of the correct implementation of the
numerical scheme and its link to the thermodynamic model. Plate 1(a) shows the iso-Mach
lines in the �ow �eld around the RAE2822 airfoil as calculated by zFlow using a real gas
thermodynamic model. As a quantitative comparison, in Plate 1(b) the pressure coe�cient Cp

as obtained by the zFlow calculation is displayed together with the Cp reported in Reference
[60]. As it can be noted the zFlow calculation compares very well with the reference data.

5. COMPUTATIONAL EFFICIENCY

In order to show the e�ectiveness o�ered by the implicit backward Euler time integration
scheme in relation with the computation of steady state �ows of �uids modelled by complex
EOS, the CPU time was evaluated in some test cases. The benchmark is the calculation of
the �ow around the RAE2822 airfoil described in the preceding section.
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Table I. CPU time required for the computation of the residual, linear system entries,
solution of the linear system, and thermodynamics computations.

Thrm. model Residual System eval. System sol. EOS eval.

Ideal 0.18 0.22 2.70 0.01

PRSV 0.18 0.22 2.70 11.06

The �gures indicates the measured timings in seconds for an AMD Athlon MP 1500
processor.

Table I shows the CPU time required for (1) the evaluation of the residual vector (required
by the explicit Runge–Kutta time stepping method), (2) the evaluation and (3) the solution
of the system of linear algebraic equations (required by the implicit backward Euler scheme),
and (4) the EOS evaluations to be performed at each iteration and for all the nodes of the
grid. The timings are given for both the ideal gas and the PRSV equation of state. Notice that,
in the latter case, most of the CPU time is spent in the evaluation of the equation of state
and that the time required to (approximately) solve the system of linear algebraic equations
is only about one fourth of that required by the EOS evaluations.
The very large computational resources required for the EOS evaluation are largely due to

the saturation state computations required to check whether the thermodynamic point falls in
the single phase or in the vapour–liquid mixture region. This very time-consuming computation
is however unavoidable if meaningful quantities are to be computed, especially when the �ow
thermodynamic states are in the neighbourhood of the saturation curve. Notice also that this
is indeed the case if BZT e�ects are to be investigated—one of the primary motivations for
the development of the zFlow code.
All the computations previously described (see Table I) are to be performed at each time

step for both the explicit forward or the implicit backward Euler time integration scheme. As
a consequence the CPU time required for a single time step advancement of the solution with
the PRSV equation of state is roughly the same with both these methods. For the commonly
considered explicit multistage Runge–Kutta time stepping schemes, however, the residuals and
the EOS evaluations are to be performed at each stage of the time integration method, i.e.
several times (typically four or �ve times) for each time step. This means that the CPU time
required at each time step by such a method is much greater than that required by the simpler
forward or backward Euler scheme. In the ideal gas case, instead, the most expensive operation
is the linear system solution and consequently an implicit step is much more demanding in
terms of computational resources than an explicit one (both single or multistage).
The number of time steps required to reach the steady state solution by an explicit methods

is however much greater than that required by an implicit method since in the latter case a
much greater CFL number can be employed. The number of iterations required by a Runge–
Kutta scheme is generally at least two orders of magnitude larger than that required by the
implicit backward Euler method, even if special convergence acceleration techniques such as
residual averaging, enthalpy damping and local time stepping are employed. This means that,
in the ideal gas case, there is a tradeo� between the number of steps required to reach the
steady state solution and the computational cost of a single time step. However this is not the
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case for the PRSV computation, where the implicit backward Euler scheme is clearly much
more e�cient than the explicit Runge–Kutta scheme.
In the RAE2822 airfoil computation previously considered, for example, a reduction of �ve

orders of magnitude of the L2 norm of the density residuals was obtained after only 95 time
steps, with values of CFLmin, CFLmax and K appearing in Equation (25) equal to 1, 1010

and 2, respectively. The �nal value of the CFL number was equal to 4:78× 109. In view
of the very large CPU time needed, no attempt was made to compute the solution with the
explicit multistage Runge–Kutta method.

6. NON-CLASSICAL GAS DYNAMICS EFFECTS IN A SILOXANE FLOW

As stated in the Introduction, one of the main driving forces for the development of zFlow
is the investigation of the so-called non-classical �uid dynamic e�ects occurring in transonic
and supersonic �ows of high molecular weight �uids. As a �rst test of the zFlow capabilities
of simulating unconventional phenomena which might occur in the dense gas thermodynamic
region for BZT �uids, one of the examples presented in Reference [25] is calculated us-
ing MD6M (octadecamethyloctasiloxane, C18H54O7Si8). MD6M is a complex linear siloxanes
molecule and the model used to compute its thermodynamic properties is described in Ref-
erences [36, 61]. In the example mentioned, in order to simplify the calculation and enhance
the disappearance of the shock waves, a blade is approximated by two staggered sinusoidal
bumps of length C. In the paper by Monaco et al. a supersonic �ow of steam is compared to
a �ow of FC-71 (C18F39N). The same absolute free stream conditions are chosen so that the
steam �ow is in the ideal gas region while for FC-71 the undisturbed state is in the negative
� region.
In order to obtain a qualitative comparison with the results published in Reference [25],

the free stream parameters are chosen so that the reduced temperature and pressure are ap-
proximately the same as for FC-71 (Tr =0:995; Pr =0:940). As it can be noted in Plate 2, the
�ow �elds calculated by zFlow is very similar to the one reported in Reference [25] and this
can be regarded as a further indirect validation of the code.
Moreover the interesting phenomena of the formation of compression fans in the MD6M

�ow, around the trailing and leading edge is observed. As it can be noted in Plates 2(a) and
3(a), in the usual case of a �uid obeying to conventional �uid dynamic laws, a compres-
sion shock wave emanates from both the leading and the trailing edge. The unconventional
phenomena depicted in Plates 2(b) and 3(b) is in agreement with the theory of non-classical
gas dynamics which prohibits the formation of compression shock waves for �uid �ows in
the thermodynamic region where � is negative (�= − 0:11 for the free stream conditions of
Plates 2(b) and 3(b)). In Plate 3(b) the di�erent dependence of the Mach number from the
density is evident if compared to the ideal gas case of Plate 3(a).
Figure 4 shows the values of CP and � along the upper wall calculated by zFlow and also

highlights a comparison with the data reported in Reference [25]. It can be noted that the
curves almost superimpose in the case of the ideal gas solution while in the non-classical
cases the trends are similar but the values are di�erent as it is to be expected being the �uids
and the employed EOSs di�erent.
Even if the MD6M �ow simulation gives indication about the possibility of obtaining

positive results for the application to ORC turbines for which siloxanes are indeed already
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employed, a word of caution is mandatory: the working �uid currently employed in some
ORC plants is a simpler molecule for which non-conventional e�ects might not occur or be
less signi�cant. For more complex molecules as MD6M or FC-71, it is very likely that the
predicted negative � region lies at temperatures which are well above their thermal stability
limit. Furthermore the presence and extension of the negative � region is tightly connected
to the adopted thermodynamic model. Even if the PRSV EOS was found to be conservative
with respect to non-classical �uid dynamics e�ects [36], an e�ort is planned in order to obtain
a more accurate thermodynamic model.

7. CONCLUSIONS

This paper presents a numerical method for the solution of the Euler equations for �uids
characterized by complex equations of state which has been implemented in a computer code
named zFlow.
The distinguishing features of this code are (1) the usage of a high resolution upwind

space discretization method for general unstructured and hybrid grids which are very well
suited for the accurate computation of high Mach number �ows and allows for the greatest
geometrical �exibility and versatility, (2) the use of an implicit time integration scheme which
proved to be crucial for the e�ective computations of �uids characterized by complex and
therefore very computationally demanding EOS, and (3) the integration with an extensive
library of thermodynamic models for both pure �uids and mixtures which allows for the
realistic simulation of �uid �ow phenomena which cannot be predicted by means of the
simple polytropic ideal gas model commonly considered in most CFD codes.
The e�ectiveness of zFlow has been investigated by performing several calculations.

Validation results concern the simulation of the transonic �ow around the RAE2822 airfoil for
a simple but very well documented test case. The results obtained with zFlow compare very
well with the data available in the literature. The second computation is aimed at testing the
performance of the method in the simulation of non-classical phenomena which may occur
in the dense gas thermodynamic regime for BZT �uids. Also in this case the results are very
satisfactory and in perfect agreement with the theory of non-classical gas dynamics which
prohibits the formation of compression shock waves for �uids in the thermodynamic region
where � is negative.
The plan for further development of zFlow includes the improvement in computational

e�ciency by avoiding the very time-consuming saturation calculations whenever possible, the
extension to three dimensions, and the extension to the complete Reynolds-averaged Navier–
Stokes equations. Much of the work in this direction has already been completed and will be
the subject of a forthcoming paper.

APPENDIX A

A.1. Jacobian matrices and eigenstructure of the Euler equations in conservation form

The eigenstructure of the Jacobian matrices is of fundamental importance for the construction
of e�ective discretization schemes of the Euler equations and is therefore brie�y reviewed in
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the following. Some notation is introduced �rst. A square matrix A with a complete set of
eigenvectors can be factorized in terms of the left and right eigenvector matrices L and R
and of the diagonal eigenvalue matrix �. The left, right, and eigenvalue matrices satisfy to
the relations

AR=R�; LA=�L; LR=RL= I

from which the spectral decomposition

A=R�L; �=LAR

can be easily deduced.
Since the �ux function F(u) depends on the pressure P and the Jacobian matrices are the

derivatives of the Euler �ux function with respect to the conservative variables u, it is con-
venient to introduce a relation which expresses the pressure as a function of the conservative
variable vector u. To distinguish this function from the EOS function P=P(�; e), it is denoted
by �=�(�; �et; �v), a function which is simply related to P(�; e) by the relation

�(u)=�(�; �et; �v)=P(�; �et=� − |v|2=(2�2))
The partial derivatives of �(u) can be written in compact form as

∇u�(u)=
[
@�
@�

;
@�
@�et ;

@�
@�vj

]T
= [��;��et ;��vj ]

T

where j=1; : : : ; d. Notice that only 2 of the d+ 2 components of the partial derivatives of
�(u) are independent from one another since the underlying function P(�; e) has only two
independent variables (and partial derivatives). The application of the chain rule yields,

�� =
@P(�; e)

@�
− e

�
@P(�; e)

@e

��et =
1
�

@P(�; e)
@e

(A1)

��vj =
vj
�

@P(�; e)
@e

The determination of the functions P(�; e), �(�; e)= (@P=@�)e and �(�; e)= (@P=@e)�—which
requires in general very involved calculations since the thermodynamic equation of state
directly available is usually in the form P=P(�; T ), where T denotes the �uid temperature—is
discussed in Section 3.
The Jacobian matrices, the left and right eigenvector matrices, and the eigenvalue matrices

of the Euler equations are given in the following. For compactness of notation, two addi-
tional auxiliary variables are introduced. They appear over and over in the expression of the
eigenvector matrices of the Euler equations, namely

�=�� − c2; = |v|2 −��=��et (A2)
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where c denotes the speed of sound. It can be shown that the speed of sound is related to
the partial derivatives of the pressure function �(u) by the expression

c2 =�� + (ht − |v|2)��et (A3)

where ht is the total enthalpy ht = et + p=�. In addition, the partial derivatives ��vj can be
written as

��vj = vj��et (A4)

by combining the second and third relations (A1). The entries of the Jacobian matrices and
the entries of their eigendecomposition in one, two and three spatial dimensions can therefore
be explicitly written as described hereafter. It is worthwhile anticipating that, by virtue of
relations (A2)–(A4), the Jacobian matrices in the direction n and their eigendecomposition
can be expressed entirely in terms of the values of the thermodynamic variables h, ��, ��et

and on the velocity vector v (and, obviously, on the unit normal vector n).

A.1.1. One-dimensional Euler equations. In the following qn = vx; nx = 1

A =




0 0 nx

−qn(ht −��) qn(1 + ��et) htnx − vxqn��et

−vxqn +��x ��et nx qn(2−��et)


 (A5)

� =



vx − c 0 0

0 vx 0

0 0 vx + c


 (A6)

R =




1 1 1

ht − cvx v2 −��=��et ht + cvx

vx − c vx vx + c


 (A7)

L =
1
c2



(�� + cvx)=2 ��et =2 (��vx − c)=2

� ��et ��vx

(�� − cvx)=2 ��et =2 (��vx + c)=2


 (A8)

A.1.2. Two-dimensional Euler equations. In the following qn and qt denote the normal and
tangential components of the velocity vector v, i.e. qn = vxnx + vyny; qt = vynx − vxny.

A =




0 0 nx ny

−qn(ht −��) qn(1 + ��et) htnx − vxqn��et htny − vyqn��et

−uqn +��nx ��et nx qn + vx(1−��et)nx vxny − vy��et nx

−vyqn +��ny ��et ny vynx − vx��et ny qn + vy(1−��et)ny




(A9)
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� =




qn − c 0 0 0

0 qn 0 0

0 0 qn 0

0 0 0 qn + c




(A10)

R =




1 1 0 1

ht − cqn  −qt ht + cqn

u − cnx u ny u+ cnx

v − cny v −nx v+ cny




(A11)

L =
1
c2




(�� + cqn)=2 ��et =2 (��vx − cnx)=2 (��vy − cny)=2

−� −��et −��vx −��vy

c2qt 0 c2ny −c2nx

(�� − cqn)=2 ��et =2 (��vx + cnx)=2 (��vy + cny)=2




(A12)

A.1.3. Three-dimensional Euler equations. In the following qn denote the normal component
of the velocity vector v, i.e. qn= vxnx + vyny + vznz.

A =




0 0 nx ny nz

−qn(ht −��) qn(1 + ��et ) htnx − vxqn��et htny − vyqn��et htnz − vzqn��et

−vxqn +��nx ��et nx qn + vx(1−��et )nx vxny − vy��et nx vxnz − vz��et nx

−vyqn +��ny ��et ny vynx − vx��et ny qn + vy(1−��et )ny vynz − vz��et ny

−vzqn +��nz ��et nz vznx − vx��et nz vzny − vy��et nz qn + vz(1−��et )nz



(A13)

� =




qn − c 0 0 0 0

0 qn 0 0 0

0 0 qn 0 0

0 0 0 qn 0

0 0 0 0 qn + c




(A14)
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R =




1 nx ny nz 1

ht − cqn nx + vnz − wny ny + wnx − unz nz + uny − vnx ht + cqn

u − cnx unx uny − nz unz + ny u+ cnx

v − cny vnx + nz vny vnz − nx v+ cny

w − cnz wnx − ny wny + nx wnz w + cnz




(A15)

L =
1
c2




(�� + cqn)=2 ��et =2 (��vx − cnx)=2 (��vy − cny)=2 (��vz − cnz)=2

−�nx − c2(vnz − wny) −��et nx −��vx nx −��vy nx + c2nz −��vz nx − c2ny

−�ny − c2(wnx − unz) −��et ny −��vx ny − c2nz −��vy ny −��vz ny + c2nx

−�nz − c2(uny − vnx) −��et nz −��vx nz + c2ny −��vy nz − c2nx −��vz nz

(�� − cqn)=2 ��et =2 (��vx + cnx)=2 (��vy + cny)=2 (��vz + cnz)=2




(A16)

A.2. Riemann invariants and characteristic equations

The Riemann invariants and the characteristic equations for the one-, two- and three-dimensi-
onal Euler equations (projected in an arbitrary direction n in the multidimensional case) are
hereby presented. Since the computation of the Riemann invariants using the conservative
form of the Euler equations is in fact very involved, another formulation is described, i.e.
the Riemann invariants and characteristic equations which can be obtained by considering the
Euler equations in the ‘primitive’ form which governs the evolution in space and time of the
primitive variables �, P and v.

A.2.1. One-dimensional Euler equations. In the 1D case, the Riemann invariants in the dif-
ferential form can be written as,

d�1 =
1
2

(
dP
c2

− �
c
du
)

d�2 = d� − dP
c2

(A17)

d�3 =
1
2

(
dP
c2
+

�
c
du
)

and the characteristic equations are therefore

dP − �c du = 0 along
dxn
dt
= u − c (A18)

c2d� − dP = 0 along
dxn
dt
= u (A19)

dP + �c du = 0 along
dxn
dt
= u+ c (A20)
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A.2.2. Two-dimensional Euler equations. In the 2D case, the Riemann invariants in the dif-
ferential form can be written as,

d�1 =
1
2

(
dP
c2

− �
c
dqn

)

d�2 = d� − dP
c2

(A21)
d�3 = � dqt

d�4 =
1
2

(
dP
c2
+

�
c
dqn

)

and the characteristic equations are therefore

dP − �c dqn = 0 along
dxn
dt
= u − c (A22)

c2 d� − dP = 0 along
dxn
dt
= u (A23)

dqt = 0 along
dxn
dt
= u (A24)

dP + �c dqn = 0 along
dxn
dt
= u+ c (A25)

A.2.3. Three-dimensional Euler equations. In the 3D case, the Riemann invariants in the
di�erential form can be written as,

d�1 =
1
2

(
dP
c2

− �
c
dqn

)

d�2 =
(
d� − dP

c2

)
nx + �(nzdvy − nydvz)

d�3 =
(
d� − dP

c2

)
ny + �(nxdvz − nzdvx) (A26)

d�4 =
(
d� − dP

c2

)
nz + �(nydvx − nxdvy)

d�5 =
1
2

(
dP
c2
+

�
c
dqn

)

and the characteristic equations are therefore

dP − �c dqn = 0 along
dxn
dt
= u − c (A27)
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Plate 1. (a) Iso-Mach lines calculated by zFlow (nitrogen and PRSV equation of state) for compari-
son with the reference case in Reference [60]. Far �eld conditions: M =0:75, angle of attack �=3◦,
P=1bar and T =25◦C. Grid: Type-O, 192× 49 nodes. (b) Comparison between the pressure coe�cient

calculated by zFlow (�) and the reference data reported in Reference [60] (−).
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Plate 2. Constant Cp contours for the �ow of: (a) air (ideal gas); and (b) MD6M
(PRSV EOS) between two staggered sinusoidal blades. Free stream conditions for

MD6M: M∞=1:6, P∞=6:362 bar, T∞=686:82 K.
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(c2 d� − dP)nx + �c2(nzdvy − nydvz) = 0 along
dxn
dt
= u (A28)

(c2 d� − dP)ny + �c2(nxdvz − nzdvx) = 0 along
dxn
dt
= u (A29)

(c2 d� − dP)nz + �c2(nydvx − nxdvy) = 0 along
dxn
dt
= u (A30)

dP + �c dqn = 0 along
dxn
dt
= u+ c (A31)
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